导航:首页 > 信息技术 > 5g技术领域有哪些

5g技术领域有哪些

发布时间:2022-10-03 15:00:50

Ⅰ 5G技术在哪些领域已经进入了应用阶段

联通5G技术目前已经在以下领域得以应用:


应用一、5G智慧码头

千米之外、轻点按键,实现从转炉冶炼到出钢的全流程自动化“一键炼钢”——从前钢铁人想都不敢想的事,在中国宝武党委书记、董事长陈德荣的手中,在现场数百双眼睛的注视下,变成了现实。(视频链接)

Ⅱ 中国电信5G将有哪些行业应用

中国电信正在5G应用创新方面开展广泛合作,目前已发展超过200家的试验客户和合作伙伴,聚焦政务、制造、交通、物流、教育、医疗、媒体、警务、旅游、环保等十大垂直行业的重点业务场景,开展了丰富的5G应用创新。

Ⅲ 5G主要技术场景有哪些

5G技术的三大应用场景

(1)首先是eMBB,直译为“增强移动宽带”,就是以人为中心的应用场景,集中表现为超高的传输数据速率,广覆盖下的移动性保证等。

未来几年,用户数据流量将持续呈现爆发式增长(年均增长率47%),而业务形态也以视频为主(78%),在5G的支持下,用户可以轻松享受在线2k/4k视频以及VR/AR视频,用户体验速率可提升至1Gbps(4G最高实现10Mbps),峰值速度甚至达到10Gbps。

(2)其次是uRLLC,直译为“高可靠低时延连接”。在此场景下,连接时延要达到1ms级别,而且要支持高速移动(500KM/H)情况下的高可靠性(99.999%)连接。

这一场景更多面向车联网、工业控制、远程医疗等特殊应用,其中车联网市场潜力巨大,5G时代这块蛋糕将达到6000亿美元,而通信模块在其中占比超过10%,这些应用的安全性要求极高。

(3)最后是mMTC,直译为“海量物联”,5G强大的连接能力可以快速促进各垂直行业(智慧城市、智能家居、环境监测等)的深度融合。

万物互联下,人们的生活方式也将发生颠覆性的变化。这一场景下,数据速率较低且时延不敏感,连接覆盖生活的方方面面,终端成本更低,电池寿命更长且可靠性更高。

同样地,《爱立信移动市场报告》也指出,到2023年,蜂窝物联网连接数量预计将达35亿,以每年30%的速度增长。由此,不难看出发展空间不可限量的物联网,毫无疑问将成为5G的主战场,也将成为5G的主要赢利点。

Ⅳ 5g技术有哪些

5G候选技术有如下6个方面:
1、极致增密
网络增密不是新技术,在3G网络刚一开始遇到拥堵问题时,移动运营商就意识到需要在系统或多个扇区引入新的蜂窝(cell),这带动了small cell等多种类似产品的兴起,这一技术本质上是把接入点移到离用户更近的地方。简单来说,基本上是没有其他方式来大幅增加整个系统或整个网络的容量。
5G网络很可能是由多层连接组成,也就是说不同大小、类型小区构成的异构网络:对数据连接速率要求低的区域用宏站层覆盖,对传输速率要求高的区域用颗粒层覆盖,中间再穿插其他的网络层。网络部署和协调是主要的挑战,因为运营商需要以指数级增长网络层。
2、多网协同
未来会有多张网络一起为用户终端提供连接:移动蜂窝、WiFi、终端对终端连接等等。5G系统应该能紧密协调这些网络,为用户提供不中断的顺畅体验。目前,协同多张网络仍然是一个相当大的挑战。Hotspot 2.0与下一代Hotspot的案例会是蜂窝与WiFi集成的一个参考。5G能否让终端设备在几张网络间顺利切换,还有待观察,如何无缝地从一张网络切到另一张上的确是一个最大的挑战。
3、全双工
所有现有的移动通信网络都依赖双工模式来管理上传和下载,有时分双工,有频分双工,比如说LTE FDD,其上行和下行需要两个单独的信道,而TDD呢,无论上行还是下行都采用同一个信道,只是时隙不同。
要想协调好上下行,双工模式肯定是必不可少的,但全双工技术现在仍在讨论中。如果采用这个技术方案,终端设备可同时发送和接收信息,这就有可能使现有的FDD和TDD系统容量翻番。
当然这项技术也存在巨大的挑战:需要从根本消除自干扰,网络和设备都需要巨大变化。如果克服这些挑战,整个网络容量将实现巨大增幅。
4、毫米波
现在,450MHz–2.6GHz的低频段频谱几乎已全部用于移动通信了,好在仍然有很多高频段频谱可用,这部分频谱有的高达300GHz。自然,相比运营商熟悉的低频段频谱,如何应用好这些高频段频谱,所面临的技术挑战也复杂很多,比如说频段越高,建筑物穿透就越困难,只是一面简单的墙就能成为毫米波信号的穿透障碍。
不过,还有一些高频段的GHz频谱已有占用:短距离、点对点、可视范围连接等等,它们用来为无线连接提供了更高的速率。
毫米波可以用于室内small cell(这也符合以上提到的网络增密),为一些密集区域提供高速连接。毫米波的高频段特性意味着天线会非常的小,它对设备影响的范围也相当小。然而,Ovum认为,毫米波是一项超前的技术,可能需要很多年的研发,才能使其具备成本效益能大规模投向市场。
需要注意的是,毫米波技术的发展也不是最新的,2009年成立的WiGig联盟旨在建立全球千兆级高速无缝传输的产业链,关注重点是60GHz频段,这个联盟汇聚了无线领域几乎所有的行业巨头;2014年6月,谷歌收购了由两位Clearwire前工程师创办的企业Alpental,这家公司致力于发展自组织、超低功耗、毫米波千兆无线技术,主要是60GHz频段。
5、大规模阵列天线
LTE-Advanced网络已经采用了MIMO技术,相比单一天线,MIMO能在不增加带宽的情况下成倍地提高通信系统的容量和频谱利用率。大规模阵列天线MIMO技术是MIMO技术的扩展和延伸,其基本特征就是在基站侧配置大规模的天线阵列(从几十至几千),利用空分多址(SDMA)原理,同时服务多个用户。这一技术为网络容量提升带来的益处是非常大的,当然也存在巨大挑战。不过市场普遍对这一技术很感兴趣,一家名为Artemis的初创公司,就在开发基于大规模阵列天线的pCells新型无线技术,非常适合用在高密度的用户地区。
6、虚拟化、软件控制以及云架构
向5G演进的并行趋势还有软件和云,届时网络是由分布式数据中心驱动的,由后者提供敏捷性、集中控制以及软件升级。像SDN、NFV、云以及开放生态系统都有可能是5G的基础技术,当然行业也在继续讨论如何利用这些技术和体系架构的优势。尽管这些也不是新技术,但仍有可能在5G时代得到大规模应用,因为在为数十亿上百亿个设备提供连接时,网络需要利用这些技术来提升性能。
考虑到现有的技术和需求,以上提到的所有技术都有很大的潜力应用在5G网络中。Mavrakis认为,最后选定哪些技术可能需要一个相当长的比较过程,哪些技术能胜出取决于:性能、部署、成本、政策等多项因素。不过做这样一个假设应当是合理的:成本最低的技术有最大的胜算可能,这和LTE-Advanced的发展情况是类似的。

Ⅳ 解读 5G 八大关键技术

姓名:王珺锋;学号:20011210172;学院:通信工程学院

原文链接:https://zhuanlan.hu.com/p/214055279

【嵌牛导读】5G技术已经走进我们的生活中,那么5G技术中有哪些关键技术呢?下面这篇文章简单的介绍了5G中的八大关键技术。

【嵌牛鼻子】5G 关键技术

【嵌牛提问】相对于4G技术,5G的八大关键技术有哪些新的突破?

【嵌牛正文】

1.非正交多址接入技术 (Non-Orthogonal Multiple Access,NOMA)

我们知道 3G 采用直接序列码分多址(Direct Sequence CDMA ,DS-CDMA)技术,手机接收端使用 Rake 接收器,由于其非正交特性,就得使用快速功率控制(Fast transmission power control ,TPC)来解决手机和小区之间的远-近问题。而 4G 网络则采用正交频分多址(OFDM)技术,OFDM 不但可以克服多径干扰问题,而且和 MIMO 技术配合,极大的提高了数据速率。由于多用户正交,手机和小区之间就不存在远-近问题,快速功率控制就被舍弃,而采用 AMC(自适应编码)的方法来实现链路自适应。NOMA 希望实现的是,重拾 3G 时代的非正交多用户复用原理,并将之融合于现在的 4G OFDM 技术之中。

从 2G,3G 到 4G,多用户复用技术无非就是在时域、频域、码域上做文章,而NOMA 在 OFDM 的基础上增加了一个维度——功率域。新增这个功率域的目的是,利用每个用户不同的路径损耗来实现多用户复用。实现多用户在功率域的复用,需要在接收端加装一个 SIC(持续干扰消除),通过这个干扰消除器,加上信道编码(如 Turbo code 或低密度奇偶校验码(LDPC)等),就可以在接收端区分出不同用户的信号。

NOMA 可以利用不同的路径损耗的差异来对多路发射信号进行叠加,从而提高信号增益。它能够让同一小区覆盖范围的所有移动设备都能获得最大的可接入带宽,可以解决由于大规模连接带来的网络挑战。NOMA 的另一优点是,无需知道每个信道的 CSI(信道状态信息),从而有望在高速移动场景下获得更好的性能,并能组建更好的移动节点回程链路。

2. FBMC(滤波组多载波技术)

在 OFDM 系统中,各个子载波在时域相互正交,它们的频谱相互重叠,因而具有较高的频谱利用率。OFDM 技术一般应用在无线系统的数据传输中,在 OFDM系统中,由于无线信道的多径效应,从而使符号间产生干扰。为了消除符号问干扰(ISl),在符号间插入保护间隔。插入保护间隔的一般方法是符号间置零,即发送第一个符号后停留一段时间(不发送任何信息),接下来再发送第二个符号。在 OFDM系统中,这样虽然减弱或消除了符号间干扰,由于破坏了子载波间的正交性,从而导致了子载波之间的干扰(ICI)。因此,这种方法在OFDM系统中不能采用。在OFDM系统中,为了既可以消除 ISI,又可以消除 ICI,通常保护间隔是由CP(Cycle Prefix ,循环前缀来)充当。CP 是系统开销,不传输有效数据,从而降低了频谱效率。而 FBMC 利用一组不交叠的带限子载波实现多载波传输,FMC 对于频偏引起的载波间干扰非常小,不需要 CP(循环前缀),较大的提高了频率效率。

3. 毫米波(millimetre waves ,mmWaves)

什么叫毫米波?频率 30GHz 到 300GHz,波长范围 10 到 1 毫米。由于足够量的可用带宽,较高的天线增益,毫米波技术可以支持超高速的传输率,且波束窄,灵活可控,可以连接大量设备。

4. 大规模 MIMO 技术(3D /Massive MIMO)

MIMO 技术已经广泛应用于 WIFI、LTE 等。理论上,天线越多,频谱效率和传输可靠性就越高。大规模 MIMO 技术可以由一些并不昂贵的低功耗的天线组件来实现,为实现在高频段上进行移动通信提供了广阔的前景,它可以成倍提升无线频谱效率,增强网络覆盖和系统容量,帮助运营商最大限度利用已有站址和频谱资源。我们以一个 20 平方厘米的天线物理平面为例,如果这些天线以半波长的间距排列在一个个方格中,则:如果工作频段为 3.5GHz,就可部署 16 副天线。

5.认知无线电技术(Cognitive radio spectrum sensing techniques)

认知无线电技术最大的特点就是能够动态的选择无线信道。在不产生干扰的前提下,手机通过不断感知频率,选择并使用可用的无线频谱。

6.超宽带频谱

信道容量与带宽和 SNR 成正比,为了满足 5G 网络 Gpbs 级的数据速率,需要更大的带宽。频率越高,带宽就越大,信道容量也越高。因此,高频段连续带宽成为 5G 的必然选择。得益于一些有效提升频谱效率的技术(比如:大规模 MIMO),即使是采用相对简单的调制技术(比如 QPSK),也可以实现在 1Ghz 的超带宽上实现 10Gpbs 的传输速率。

7. ultra-dense Hetnets(超密度异构网络)

立体分层网络(HetNet)是指,在宏蜂窝网络层中布放大量微蜂窝(Microcell)、微微蜂窝(Picocell)、毫微微蜂窝(Femtocell)等接入点,来满足数据容量增长要求。到了 5G 时代,更多的物-物连接接入网络,HetNet 的密度将会大大增加。

8. 多技术载波聚合(multi-technology carrier aggregation)

如果没有记错,3GPP R12 已经提到这一技术标准。未来的网络是一个融合的网络,载波聚合技术不但要实现 LTE内载波间的聚合,还要扩展到与 3G、WIFI 等网络的融合。多技术载波聚合技术与 HetNet 一起,终将实现万物之间的无缝连接。

Ⅵ 5g的应用领域有哪些

例如5G全场景应用智慧港口,厦门远海码头5G智慧港口项目在厦门港落地,厦门港“绿色智慧”升级之路又多了一道亮丽风景线。远海码头5G智慧港口项目以5G通信技术为引领,协同云平台、大数据、物联网、区块链、人工智能等新技术共同推进智慧港口建设,提升码头的自动化、智能化水平,提高产业链综合运营效率。该项目已完成5G专网建设、基于5G的AGV通信管理、5G智能理货、5G港机远控、5G智能安防、5G司机行为分析、5G无人驾驶集卡网联协作、5G无人驾驶集卡标准编制等试点工作。

Ⅶ 5g的关键技术有哪些

关键技术1:高频段传输。
移动通信传统工作频段主要集中在 3GHz 以下,这使得频谱资源十分拥挤,而在高频段(如毫米波、厘米波频段)可用频谱资源丰富,能够有效缓解频谱资源紧张的现状,可以实现极高速短距离通信,支持 5G 容量和传输速率等方面的需求。
关键技术2:新型多天线传输。
多天线技术经历了从无源到有源,从二维(2D)到三维(3D),从高阶 MIMO 到大规模阵列的发展,将有望实现频谱效率提升数十倍甚至更高,是目前 5G 技术重要的研究方向之一。
关键技术3:同时同频全双工。
最近几年,同时同频全双工技术吸引了业界的注意力。利用该技术,在相同的频谱上,通信的收发双方同时发射和接收信号,与传统的 TDD 和 FDD 双工方式相比,从理论上可使空口频谱效率提高1倍。
关键技术4:D2D。
传统的蜂窝通信系统的组网方式是以基站为中心实现小区覆盖,而基站及中继站无法移动,其网络结构在灵活度上有一定的限制。
关键技术5:密集网络。
在未来的 5G 通信中,无线通信网络正朝着网络多元化、宽带化、综合化、智能化的方向演进。随着各种智能终端的普及,数据流量将出现井喷式的增长。
关键技术6:新型网络架构。
目前,LTE 接入网采用网络扁平化架构,减小了系统时延,降低了建网成本和维护成本。未来5G 可能采用 C-RAN 接入网架构。

Ⅷ 5g包括哪些内容

对于5G整个产业链,我们可以简单分为上中下游三个方面。

上游主要是基站升级(含基站射频、基带芯片)

中游网络建设(网络规划设计公司、网络优化/维护公司)

下游产品应用及终端产品应用场景构成。(云计算、车联网、物联网、VR/AR)

上中下游里面又可以包括器件原材料、基站天线、小微基站、通信、网络设备、光纤光缆、光模块、系统集成与服务商、运营商等各细分产业链。

一、5G架构体系

我们将5G架构体系划分为基站系统、网络结构、应用场景和终端设备四个部分,每部分都对应各自不同的产业链环节。

终端设备:5G 的终端设备将不局限于手机和电脑,还将涵盖家电、汽车、穿戴设备、工业设备等,其核心产业链环节为通信芯片、通信模块、天线和射频等部分。

基站系统:基站是提供无线覆盖和信号收发的核心环节,包括基站主设备和室外天馈系统,其中基站主设备为BBU(基带单元),室外天馈系统包括天线、RRU(远端射频单元)等。由于5G高网络容量和全频谱接入需求,天线射频模块集成、大规模天线技术(Massive MIMO)、小微基站和室内分布是基站系统演进的主要方向。

网络架构:为适应不同应用场景,5G网络架构需要进行颠覆性的变革,其关键在于利用 SDN (软件定义网络)/NFV(网络功能虚拟化)技术,形成包括基础设施、管道能力、增值服务、数据信息等不同的能力集,实现网络功能虚拟化、资源集中化、服务自动化、管理操作云平台化。5G 网络架构的产业链包括通信网络设备(SDN/NFV 解决方案)、光纤光缆、 光模块、网络规划运维等环节,其中最核心环节为通信网络设备及SDN/NFV 解决方案。

应用场景:5G 最革命性的意义在于与工业设施、医疗仪器、交通工具等的深度融合,有效满足工业、医疗、交通等垂直行业的多样化业务需求,形成智慧城市、远程医疗、工业自动化、自动驾驶等垂直领域的典型应用,实现万物互联的愿景。其产业链环节主要为系统集成与行业解决方案、大数据应用、物联网平台解决方案、增值服务与行业应用等。

Ⅸ 5g通信技术的应用有哪些

5g通信技术的应用有远程医疗,自动驾驶等等,只要可以联网而且延迟低的工作都可以使用5g技术。

Ⅹ 5G网络有望改变中国多个行业,5G应用领域都有哪些

在线教育、游戏以及远程医疗等方面。

近日,根据最新相关的研究报告显示,在短期内,5G网络可能会改变国内的多个行业,提供一种新形式的在线教育、游戏以及远程医疗、远程工作以及串流直播和电子商务服务。在未来几年的时间内,5G企业的应用领域会出现大量不同的业务模式。

接着是汽车行业,5G技术预计会在汽车行业中推动车联网和自动驾驶汽车以及车载娱乐系统的快速发展。此外,在未来几年的时间内,5G企业的应用领域会出现大量的、存在差异的业务模式,根据业务规模、实施成本的标准可分为这样的四类,首先是生态构建者。5G技术可能会推动全新一轮的应用和设备的发展,将消费者与5G技术的物联网产品、服务提供商极大的联系起来。其次是产品颠覆者,5G技术的发展前景为技术创新提供了不可错过的机会。专业切片者可为行业的细分市场提供一种专属服务,利用网络切片为某个应用场景划出一个特定的虚拟网络,价值延伸者可为行业建立一种新的业务模式。

阅读全文

与5g技术领域有哪些相关的资料

热点内容
苏醒之路怎么修改数据 浏览:964
信息如何找回前一天删除的 浏览:123
广东2018中博会哪些产品 浏览:437
造船企业技术部怎么样 浏览:98
程序员都要学什么技能 浏览:777
为什么说银行理财产品单一 浏览:412
路边停车能采集哪些数据 浏览:572
哪些企业可以获得碳交易配额 浏览:292
怎么和情人聊天让她不发信息 浏览:773
如何确定技术转让费 浏览:477
生态岗位交易是什么意思 浏览:687
产品经理如何出头 浏览:263
女中专学什么技术好 浏览:609
有脾气天团小程序怎么注册 浏览:184
怎么发起小程序项目 浏览:255
运营式系统核心阶段技术是什么 浏览:241
玛莎拉蒂钥匙怎么走平台交易 浏览:229
电脑核心技术有哪些 浏览:584
怎么把信息录入大脑系统 浏览:7
产品进商超怎么谈 浏览:850